n^2+84*n=16

Simple and best practice solution for n^2+84*n=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+84*n=16 equation:



n^2+84n=16
We move all terms to the left:
n^2+84n-(16)=0
a = 1; b = 84; c = -16;
Δ = b2-4ac
Δ = 842-4·1·(-16)
Δ = 7120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7120}=\sqrt{16*445}=\sqrt{16}*\sqrt{445}=4\sqrt{445}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{445}}{2*1}=\frac{-84-4\sqrt{445}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{445}}{2*1}=\frac{-84+4\sqrt{445}}{2} $

See similar equations:

| 5a+2=6-(7a) | | n^2+84*n=9 | | n^2+84*n=4 | | 4b+1=-7 | | 17+2h=1/2 | | 2x-3(-4)=-10 | | 2(x-3)=-4(-x+2) | | 3(-5-2p)-(-2+3p)=-2(2p-5)-4p+3 | | 12p+-11p=-5 | | −23(12c−9)=+14c | | 5x-33+6x=4=180 | | 5z+14z+-7z+4z=-16 | | 3T+30=6n | | x+35/x=-12 | | 3-(-5-2p)-(-2+3p)=|-2|(2p-5)-(-4p+3) | | 3x+2x+10=5(x+2) | | 112=-8x | | 2n+7(-4n-4)=4(n-7) | | 3w+4=-5 | | Y=100/(x-1) | | n^2+84*n=85 | | n^2+84*n=2 | | 3x-5(x-4)=-3+4x-7 | | 7w+4=8w | | n^2+84*n=1 | | 288=-6(7v-6) | | 4(2a-1)-a-4=-1 | | 22x+140=180 | | w+|−2.8|=4.3 | | x+21=4x-39 | | 2/3y+11/12=7/4 | | -174=6(1+5m) |

Equations solver categories